オクラホマシティサンダーブログ

<ウェブサイト名>

<現在の時刻>

出典: 標準

メインコンテンツにスキップ グローバルメニューにスキップ | フッターにスキップ メニューボタン 対象者別 ">入学希望の方">卒業生の方">地域・一般の方">企業・メディアの方">在学生">教職員 探す アクセス Language JP EN TOPニュース・イベント【研究成果発表】大面積配列制御単層カーボンナノチューブ薄膜の特異な光吸収特性を発見https://www.tmu.ac.jp/news/topics/16892.html 2018.03.16 【研究成果発表】大面積配列制御単層カーボンナノチューブ薄膜の特異な光吸収特性を発見 ~新型半導体レーザーやフレキシブル熱電変換素子への展開に期待~ 報道発表 【ポイント】 ●従来の研究では、ナノチューブの電子構造がいろいろと混ざっていたり、ナノチューブの向きが不規則であったり、フェルミレベルの調整がなされていない薄膜に対してしか物性が明らかにされていなかった。●本研究では、一方向に配向した単層カーボンナノチューブの大面積薄膜に高密度にキャリア注入制御を実現し、単層カーボンナノチューブの軸の垂直方向に新たな光吸収が生じることを発見した。●単層カーボンナノチューブの量子カスケードレーザーの実現や、配向制御ナノチューブ薄膜の熱電物性の解明による高性能なフレキシブル熱電変換素子の開発につながる。 ◆  JST 戦略的創造研究推進事業において、首都大学東京の柳和宏教授らは、一方向に配向した単層カーボンナノチューブ(以下、「ナノチューブ」)の大面積薄膜に高密度にキャリア注1)(電子・正孔)を注入制御し、これまで発見されていなかったナノチューブ軸に垂直方向の巨大な光吸収現象を見いだすことに成功しました。 ナノチューブは筒状の一次元物質で、その構造の一次元性を反映した様々な面白い物性が理論的に予想されています。従来は、ナノチューブを一方向に並べたり、電子密度を精密に制御したりすることが困難であり、一次元的な性質を大面積の薄膜で発見することはできていませんでした。 本研究グループは、一方向に配向したナノチューブの薄膜を作製し、高密度のキャリア注入制御注2)に成功しました。その結果、ナノチューブの軸に垂直方向の偏光に応答する巨大な光吸収があることを世界で初めて確認しました。 この光吸収では、1ナノメートル(nm)程度というナノチューブのサイズに極限レベルで閉じ込められた多くのキャリアが同時に光と応答(プラズモン吸収注3))しており、ナノチューブを用いた量子カスケードレーザー注4)の実現にもつながります。また、この薄膜作製やキャリア注入制御技術の発展は、高性能なフレキシブル熱電変換素子の実現にもつながるものです。 本研究は、ライス大学の河野淳一郎教授と共同で行ったものです。 本研究成果は、2018年3月16日(英国時間)に科学誌「Nature Communications」のオンライン速報版で公開されました。 本成果は、以下の事業・研究領域・研究課題によって得られました。戦略的創造研究推進事業 チーム型研究(CREST)研究領域:「ナノスケール・サーマルマネージメント基盤技術の創出」(研究総括:丸山茂夫(東京大学教授))研究課題名:「フレキシブルマテリアルのナノ界面熱動態の解明と制御」研究代表者:柳 和宏(首都大学東京 理工学研究科 教授)研究期間:平成29年11月~平成35年3月 研究の背景と経緯  現在、200度以下の中低温領域の熱は、環境中に大量に放出されていますが、そのほとんどが全く活用されていません。資源の乏しい日本では、この中低温領域の排熱を有効利用できる技術の開発はとても重要な課題であり、様々なものがインターネットにつながるIoTを実現するためにも、環境から効率良くエネルギーを取り出すことが可能な電源の開発が強く求められています。たとえば、我々の身体をはじめ、様々な形状の熱源から電力を取り出せる、柔軟で伸縮性を備えた高性能なフレキシブル熱電変換素子の開発は重要課題の1つです。 ナノチューブは、フレキシブル熱電変換素子の候補となり得る材料ですが、その熱電変換特性を理解するためには、①単一電子構造のナノチューブに対して、②そのフェルミレベル注5)(電子密度)を制御し、かつ③配列状況が制御された薄膜の熱電特性を明らかにしていく必要があります。従来の研究では、ナノチューブの電子構造がいろいろと混ざっていたり、ナノチューブの向きが不規則であったり、フェルミレベルの調整がなされていない薄膜に対してしか物性が明らかにされていませんでした。高性能で精密なデバイスを視野に入れるためには、ナノチューブを一方向に配列した均一な薄膜を作製し、フェルミレベルを自在に制御する技術を確立する必要がありました。 研究の内容  首都大学東京の柳教授らは、キャリア注入によって極めて高純度に電子構造の揃ったナノチューブを得る手法や、そのフェルミレベルを自在に制御する手法を持っています。一方、ライス大学の河野教授らはナノチューブを一方向に配向させた大面積薄膜を作製する技術を持っていました。本研究では、河野教授らが作製した一方向に配向した大面積ナノチューブ薄膜に対して、柳教授らが高密度にキャリア注入制御を行う研究を進めました。 配向が制御されているかどうか、またキャリア注入が出来ているかどうかは、光吸収スペクトルの偏光依存性から確認できます。一般的にナノチューブは、軸に平行の偏光方向を持つ光を吸収し、軸に垂直方向の偏光を持つ光を吸収しません。また、キャリア密度が増えると光吸収が無くなります。作製した大面積のナノチューブ薄膜に偏光を当てながら電圧をかける実験により、ナノチューブが一方向に配向していることとキャリア注入量が制御されていることが確認できました。 さらに、電圧を増していくと、ナノチューブの軸に垂直方向に非常に大きな光吸収が起こることを世界で初めて発見しました。このような現象は、金属型のナノチューブや半導体型のナノチューブといった特定の電子構造を有するナノチューブを一方向に配列させた薄膜でも確認できました。  ナノチューブの軸に垂直方向の偏光に応答する大きな光吸収が見られた背景は、半導体量子井戸注6)において見られるサブバンド間のプラズモン吸収と同様のものとして解釈できます。通常の半導体量子井戸におけるサブバンド間のプラズモン吸収は、約1~10ミリエレクトロンボルト(meV)ほどの遠赤外光・中赤外光領域であるのに対し、今回、ナノチューブで確認されたのは1エレクトロンボルト(eV)ほどの近赤外光領域という従来の1000倍にも相当する大きなエネルギー領域です。これは、1nm程度というナノチューブとしては量子閉じ込めの極限状態にあるプラズモン吸収を見いだしたことを意味します。 今後の展開  半導体量子井戸におけるこのサブバンド間の光遷移現象は、量子カスケードレーザーという遠赤外・中赤外領域のレーザー光源に応用されています。よって、ナノチューブにおいてサブバンド間のプラズモン吸収が可能であるということは、将来的にナノチューブを用いた量子カスケードレーザーへの応用の可能性を示唆するものです。また、一方向に配列したナノチューブの大面積薄膜を作製し、そのキャリア注入制御を精密に行う技術も確立しました。今後、配向ナノチューブ薄膜の熱電特性を解き明かしていき、高性能なフレキシブル熱電変換素子の実現を目指していきます。 【参考図】   (上図)大面積のナノチューブ配列薄膜の写真。 (下図)ナノチューブ軸に対する偏光方向とキャリア注入状態の違いによる光吸収特性。 ゲート電極の電圧がゼロ(VG=0.0ボルト(V))の時と、高密度に電子注入を行った時(VG=4.3V)のナノチューブ軸に平行方向の光吸収スペクトル(左下図・青線)と軸に垂直方向の光吸収スペクトル(右下図・赤線)。S11,S22,M11は、それぞれ半導体型ナノチューブの第一、第二吸収帯、および金属型ナノチューブの第一吸収帯を示している。ISBP(Intersubband Plsasmon)はサブバンド間のプラズモン吸収帯である。通常の状態(VG=0.0V)では、軸に平行方向の吸収が大きいが、高密度に電子を蓄積した状態(VG=4.3V)では、軸に垂直方向の吸収(右下図・赤線)が1eV程度のエネルギーに大きなピークを作っていることが分かる。 用語解説 注1)キャリア 固体において電荷を運ぶ担体をキャリアとよび、負の電荷の担体は電子であり、正の電荷の担体を正孔とよぶ。 注2)キャリア注入制御 イオン液体という陽イオンと負イオンを持つ溶液にナノチューブ配列薄膜を浸して、電界をかけることで、ナノチューブ表面に電気二重層という微小なコンデンサを形成させ、電界の正・負や大きさを制御することで、ナノチューブに蓄積させる電荷の正負や量を制御する。 注3)プラズモン吸収 例えば、ステンドグラスの色など、金属ナノ粒子はその大きさに依存して様々な光を吸収することが知られている。金属などの自由電子キャリアが光と応答し、その光を吸収することをプラズモン吸収という。ナノチューブにおいてその吸収がユニークなのは、その自由電子キャリアが、1nmという微小極限の空間に閉じ込められた状況でのプラズモン吸収であることである。 注4)量子カスケードレーザー レーザーポインタなどにも応用される通常の固体レーザーにおいて、レーザー光を出すためには電子(負の電荷)およびホール(正の電荷を持つ電子)の両方を必要とするが、量子カスケードレーザーでは、例えば、電子側に生じる飛び飛びのエネルギー準位を利用する共鳴トンネル現象という現象を用いるため、電子だけでレーザー発振が可能なレーザーである。 注5)フェルミレベル 固体物質が有している電子密度の量を示す指標。 注6)半導体量子井戸 半導体材料を積層していくことで、面内の二次元方向には自由にキャリアが動くが、積層していった方向には、井戸のようにキャリアの動きが制限されている状態。 論文タイトル タイトル:“Intersubband Plasmons in the Quantum Limit in Gated and Aligned Carbon Nanotubes”(量子極限におけるゲート印加配列制御ナノチューブにおけるサブバンド間プラズモン) 報道発表資料(383KB) 元のページに戻る 最新のニュース 2024.05.29 お知らせ 【重要】2024年度前期 一般学生 授業料減免申請 追加申請受付について 2024.05.24 お知らせ 【研究発表】一度の激しい運動がその後の身体活動量と体温を下げ体重を増やしてしまう 2024.05.17 お知らせ 【研究発表】溶液と固体の状態で円偏光を発光するキラルな亜鉛錯体の開発に成功-溶液と個体とで円偏光の回転方向が反転 新たな発光デバイスへの応用に期待- 2024.05.16 お知らせ 【研究発表】過去77年間の小笠原諸島の植生変化を解明 -過去の人為的攪乱の履歴が、生態系の復元可能性に影響- 2024.05.13 お知らせ 【研究発表】電気を流し、室温強磁性を示す希土類酸化物を発見-スピントロニクス材料としての応用に期待- Page top 大学について学部・大学院教育の特長研究・産学公連携国際展開・留学学生生活・キャリア入試案内キャンパス・施設案内ニュース・イベントHOT TOPICS教員紹介 入学希望の方卒業生の方地域・一般の方企業・メディアの方在学生教職員 お問い合わせ関連リンクサイトマップサイトポリシープライバシーポリシーソーシャルメディアポリシーWEBマガジンメトロノワ調達・契約情報 ©2024 Tokyo Metropolitan Public University Corporation Follow Us都立大X都立大Channel Open/Close大学についてOpen/Close大学の目的・使命学長メッセージ学長メッセージ <メディア>TMU Vision 2030Open/Close大学概要沿革組織図センター・機構学生数教職員数学則・規則施設概要設置認可申請書等東京都立大学の評価活動について数字で見る東京都立大学動画で見る東京都立大学シンボルマーク大学の校歌Open/Close教育情報の公表大学の教育研究上の目的・3ポリシー教育の3つのポリシー(学部)教育の3つのポリシー(大学院)教育研究上の基本組織アセスメント・ポリシー大学院(専門職大学院を除く)の学位論文審査基準授業に関すること成績評価基準、卒業・修了認定基準等メディア掲載Open/Close学部・大学院人文社会学部法学部経済経営学部理学部都市環境学部システムデザイン学部健康福祉学部Open/Close大学院 研究科・専攻一覧人文科学研究科法学政治学研究科経営学研究科理学研究科都市環境科学研究科システムデザイン研究科人間健康科学研究科大学院分野横断プログラム再編前の学部・大学院Open/Close教育の特長Open/Close革新的なカリキュラム基礎科目群教養科目群基盤科目群キャリア教育・インターンシッププログラム文理の枠を超えた履修推奨科目副専攻グローバル教育教職課程・学芸員養成課程文理教養プログラム学びのスタイル副専攻教職課程・学芸員養成課程教育基盤強化事業Open/Close教育改革推進事業首都大学東京 教育改革推進事業 FD活動都立大の教学IR ~Institutional Research~ベスト・ティーチング・アワードOpen/Close研究・産学公連携Open/Close研究センター、リサーチコア宇宙理学研究センター生命情報研究センター水道システム研究センター子ども・若者貧困研究センターソーシャルビッグデータ研究センター金融工学研究センター水素エネルギー社会構築推進研究センター医工連携研究センター量子物質理工学研究センターエネルギーインテグリティーシステム研究センター島嶼火山・都市災害研究センターコミュニティ・セントリック・システム研究センター言語の脳遺伝学リサーチコアサービスロボットインキュベーションハブリサーチコア(略称:serBOTinQ)高度研究東京都立大学 若手研究者等選抜型研究支援特別栄誉教授等制度・特別招聘教授制度共同研究・受託研究・学術相談・特定研究寄附金知的財産大学等発ベンチャー支援産学公連携スペース TMU Innovation Hub研究力強化推進プロジェクトローカル5G環境を活用した最先端研究都立大の先端研究に迫る傾斜的研究費一覧Open/Closeコンプライアンス・内部統制研究費の不正使用防止に対する取組(相談窓口・通報窓口の案内はこちら)研究活動の不正行為等防止に対する取組(通報窓口の案内はこちら)研究倫理利益相反マネージメント安全保障輸出管理Open/Close国際展開・留学多彩な留学制度/留学プログラムグローバル人材育成についてGlobal Discussion Camp(GDC)国連アカデミック・インパクト外国人留学生支援Open/Close国際交流協定協定校一覧(全学)(250KB)協定校一覧(部局間)(346KB)国際化基本方針国際化推進体制理学部生命科学科 英語課程 英語で学位が取得できるプログラムPickup!都立大の国際化 「東京都立大学ならではの体験ができる交換留学制度――異文化を肌で感じた記憶はその後の人生を変える」By 朝日新聞Thinkキャンパス広告記事Open/Close学生生活・キャリアOpen/Close学修サポート学生の修学支援主体的学修支援セミナーTA(ティーチングアシスタント)等Open/Close学生サポート学生相談室保健室ダイバーシティ推進室ボランティアセンター保険の加入学生課Open/Close施設の利用図書館連絡バス美術館の無料入場等学生寮などOpen/Closeキャンパスライフ学生広報チームpresents動画クラブ&サークルFIND YOURSELF AT TMU(2.2MB)都立大生の1日VLOG!理系・文系の学生比べてみたBy朝日新聞YouTubeチャンネル【土佐兄弟の大学ドコイク】Open/Closeキャリア・就職キャリア支援・各種サポートキャリア支援課大学院進学Pickup!キャリア支援 「1年次から履修可能な現場体験型のキャリア授業で、未来の自分を考える」By 朝日新聞Thinkキャンパス広告記事学費・減免制度・奨学金制度等Open/Close入試案内Open/Close学部入試アドミッション・ポリシー学部入試概要【2024年5月24日更新】外部英語検定試験の利用について(2025年度以降一般選抜)インターネット出願入学者選抜要項・学生募集要項入試Q&A一般選抜の入試結果【2024年5月27日更新】(133KB)多様な選抜の入試結果【2024年4月26日更新】(146KB)募集人員【2023年7月7日更新】(313KB)オープンキャンパス・説明会資料請求・お問い合わせ入学考査料・入学料・授業料Open/Close学部入試制度改正2024年度2025年度2026年度Open/Close大学院入試大学院のシステムアドミッションポリシー大学院入試概要大学院学生募集要項大学院進学後の進路状況入学考査料・入学料・授業料資料請求・お問い合わせ大学案内・大学院案内Open/Closeキャンパス・施設案内キャンパスマップCampus Gallery図書館光の塔牧野標本館交通アクセスエコキャンパス・グリーンキャンパス電力使用状況イベントカレンダー教員紹介 入学希望の方卒業生の方地域・一般の方企業・メディアの方在学生 お問い合わせ関連リンクサイトマップサイトポリシープライバシーポリシーソーシャルメディアポリシーWEBマガジンメトロノワ調達・契約情報 JP EN Follow Us都立大X都立大Channel

アスレチックス対カブス ライブでゴーゴーしたらば バカラ花 ブルージェイズ意味
Copyright ©オクラホマシティサンダーブログ The Paper All rights reserved.